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VELOCITY OF SOUND IN A MULTICOMPONENT MEDIUM AT REST

UDC 533.6.011.51S. P. Bautin

The Kuropatenko model is considered, as applied to a multicomponent medium where the number of
the sought functions coincides with the number of equations. The velocities of sound in a multicom-
ponent medium at rest are determined. A formula of a polynomial of power N whose positive roots
are squared velocities of sound in a medium with N components is derived. For N = 2, the values
of two velocities of sound are determined in explicit form. It is demonstrated that the thus-found
maximum value of the velocity of sound in a two-component medium containing nitrogen and oxygen
with volume concentrations corresponding to air differs (in dimensionless form) from the velocity of
sound in air by less than 0.3%. Numerical calculations predict the existence of three velocities of
sound in a three-component medium. If the velocity of sound in all N components is identical, it is
proved that the maximum velocity of sound in such a medium equals this velocity, and there is only
one more velocity of sound in the medium, which has a lower value.

Key words: multicomponent medium, sound characteristic, velocity of sound.

A new mathematical model was proposed in [1] to describe the flows of multicomponent media. This model is
a special quasi-linear system of equations with partial derivatives, which is based on conservation laws for the mixture
obtained from conservation laws for individual components. Both the binary interactions of various components
and the cluster interaction of the components with the virtual continuous medium are taken into account. One
basic advantage of the Kuropatenko model (KM) is its closedness: the KM of a multicomponent medium contains
an identical number of equations and functions, and its closure does not require additional hypotheses specifying
the properties of the mixture.

In the present paper, we consider the KM of a multicomponent medium in the case of plane-symmetric
flows, where each of the N components is an ideal polytropic gas. The main challenge of the paper was to derive
an analytical expression for the velocity of sound in such a multicomponent medium at rest.

In the case considered, the KM written in dimensionless variables has the following form:
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Here 1 ≤ i ≤ N , where N � 2 is the number of components in the multicomponent medium, i.e., the system
contains 4N equations.

In Eqs. (1)–(4), the sought functions for each ith component are the partial density σi, velocity ui, tem-
perature Ti, and volume concentration αi. The total number of the sought functions in system (1)–(4) is also 4N .
Thereby, we have σi = αiρi, where ρi is the density of the ith component, and

σ =
N∑

j=1

σj , u =
1
σ

N∑
i=1

σiui

are the partial density and velocity of the virtual medium, respectively.
The equations of state of each ith component are taken in the form

Pi = (γi − 1)c0
viρiTi, Ei = c0

viTi, pi = αiPi, i = 1, 2, . . . , N,

where Pi and Ei are the pressures and internal energies of the components and γi = const > 1 and c0
vi > 0 are the

ratios of specific heats and the specific heats of the components, respectively. Then, the squared velocity of sound
in each component is

c2
i = γi(γi − 1)c0

viTi.

The constant positive exchange coefficients aji, bji, and cji are assumed to be given, and

aji = aij , bji = bij , cji = cij , 1 ≤ i ≤ N, 1 ≤ j ≤ N.

Before studying the issue of the velocity of sound in a multicomponent medium at rest, i.e., the existence of
the corresponding characteristics of system (1)–(4), we should given one comment of principal importance.

In deriving the KM of a multicomponent medium in [1], as well as in deriving other models of heterogeneous
media (see, e.g., [2]), the following equality is postulated to be valid:

N∑
i=1

αi = 1. (5)

Both in [1] and in the present paper, however, equality (5) is not present explicitly. We do not consider this equality
specially in the present paper, which allows us to study a system containing only differential but not functional
equations. Moreover, if relation (5) is added to system (1)–(4), the system becomes overdetermined: the number
of equations becomes greater than the number of the sought quantities. A further analysis of this overdetermined
system is rather difficult.

Naturally, the mere fact of including or not including condition (5) into the system of the KM of a multi-
component medium also exerts a significant effect on the number of characteristics and on the values of velocities
along these characteristics.

376



Two options are possible to justify the fact that relation (5) is not included into system (1)–(4): 1) to prove
that relation (5) is a corollary of system (1)–(4); 2) to check the validity of equality (5) for each solution of system
(1)–(4) obtained.

In the first case, we obtain the following theorem.
Theorem 1. If for the described KM of a multicomponent medium (1)–(4) of flows equilibrium in terms of

velocities, i.e., in the case
ui(t, x) = uj(t, x) = u(t, x), 1 ≤ i ≤ N, 1 ≤ j ≤ N, (6)

the equality
N∑

i=1

αi(t, x)
∣∣∣
t=0

= 1 (7)

is valid, then equality (5) holds for all t and x for which ui(t, x) are continuous and pi(t, x) �= 0, 1 ≤ i ≤ N .

Proof. If condition (6) is valid and the inequalities pi(t, x) �= 0 and 1 ≤ i ≤ N are satisfied, all Eqs. (4)
transform to the transport equations
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Condition (7) is the initial condition for Eq. (8) and ensures solution uniqueness. The existence of the solution of
the transport equation (8) ensures continuity of the function u(t, x). This unique solution of Eq. (8) is the function

α(t, x) = 1.

Theorem 1 is proved.
Proving a similar theorem in the general case is a difficult task.
In the present work, we do not construct sophisticated solutions of system (1)–(4). We study only one

property of this system by an example of a particular simple solution for which the above-proved theorem is valid.
Therefore, we do not need to justify the second variant of non-including equality (5) into system (1)–(4) in the case
of other exact solutions.

System (1)–(4) has an exact solution

σi = σ0
i = const > 0, ui = 0, Ti = T 0

i = const > 0,

αi = α0
i = const > 0, 1 ≤ i ≤ N,

(9)

which describes the homogeneous rest where all components are in equilibrium not only in terms of velocities (all
velocities are equal to zero) but also in terms of temperatures and pressures:

T 0
i = 1, P 0

i = P 0 = const > 0.

To construct such a solution, we first choose the constants α0
i to satisfy the equality

N∑
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α0
i = 1.

Then, we have to choose the constants ρ0
i so that the pressures of all components are equal, for instance, to unity:
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viρ

0
i , 1 ≤ i ≤ N.

After that, we can unambiguously determine the constants ρ0
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The resultant exact solution (9) of system (1)–(4), which is called the homogeneous equilibrium rest, is
denoted as U0

i , 1 ≤ i ≤ N .
It is known that the characteristics of a quasi-linear system are determined only on a particular specified

solution [3]. The characteristics of system (1)–(4) are further constructed on the homogeneous equilibrium rest (9).
For this purpose, the values of the gas-dynamic parameters (9) are substituted to the coefficients at the partial
derivatives in system (1)–(4) considered. To simplify calculations, we make the coefficients at the derivatives with
respect to time in the resultant equations equal to unity by dividing by appropriate constants. In addition, we take
into account that (c0

i )
2 = γi(γi − 1)c0

vi and introduce the notation θ0
i = (c0

i )
2, δ0

i = σ0
i /σ0. As a result, we obtain

the following expression for the principal part of the system:

Ut + GUx.

The vector of unknown functions U here contains 4N components: σ1, u1, T1, α1, . . . , σN , uN , TN , and αN ; the
matrix G has the dimension 4N × 4N .

The characteristics of system (1)–(4) on solution (9) are straight lines:

x − x0 = k(t − t0) (10)

(x0 and t0 are constants and k are the velocities of propagation of small perturbations called the velocities of sound
in gas dynamics [3]). The straight line (10) is the characteristic on solution (9) if and only if the value k is the root
of the characteristic equation

ΔN = det (G − kE) = 0. (11)

Let us first consider the case N = 2, i.e., the case of a two-component medium. The determinant Δ2 is a determinant
of the eighth order:
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By applying simple identity transformations, we obtain the following presentation of the sought determinant Δ2

via the fourth-order determinant:
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The fourth-power polynomial of k in braces is a biquadratic polynomial of λ = k2. With allowance for δ0
1 + δ0

2 = 1,
the roots of this polynomial P2(λ) are determined by the formula
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is positive for δ0
i > 0 and θ0

i > 0 (i = 1, 2), both roots λ± are also positive, and the polynomial P2(k2) has four real
roots.

Hence, for N = 2, the characteristic equation (11) Δ2 = 0 has eight real roots with allowance for their
multiplicity.

The first root of the characteristic equation is the zero quadruple root

k1,2,3,4 = 0

with the corresponding contact characteristic of multiplicity equal to four in the two-component medium. The next
four roots of the characteristic polynomial are described by the formulas

k5,6 = ±
√

λ+, k7,8 = ±
√

λ−.

Four sound characteristics (each of multiplicity equal to one) correspond to these roots. The sonic characteristics
of the two-component medium propagate to the right and to the left with two velocities of sound ch > cl:
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(ch is the higher velocity of sound in the multicomponent medium at rest and cl is the lower velocity of sound in
the same medium).

The presence of four sound characteristics in the case of two-component media can be readily explained. In
its form, system (1)–(4) is close to systems of multivelocity models of multicomponent media, which also have four
sound characteristics propagating in pairs in different directions in the case of a two-component medium [4].

If we assume for certainty but without losing generality that the second component has a higher velocity
of sound c0

2 > c0
1 (otherwise, the components are numbered in the opposite manner), we obtain the following

inequalities from Eqs. (12) and (13):

c0
2 > ch > c0

1 > cl. (14)

It seems that inequalities (14) are physically meaningful results of using the KM of a multicomponent
medium (1)–(4). Indeed, in addition to elastic interaction of particles of the medium, the model considered takes
into account exchange of momentum and energy between particles of different components. Such an interaction
reduces the fraction of energy spent during the elastic interaction. As it is the elastic interaction that determines
the velocity of disturbance propagation in the medium, allowance for additional interactions leads to lower velocities
of sound in a multicomponent medium than the velocities of sound in each component.

Let us compare the velocity of sound in air obtained in physical experiments [5, 6] and the value calculated
by Eq. (12). It is known that the volume fractions of nitrogen N2 and oxygen O2 in air are 78.08 and 20.95%,
respectively, [5, 6]. The remaining 0.97% are the inert gases and carbon dioxide. We assume that air is a two-
component medium and distribute the remaining 0.97% in proportion between nitrogen and oxygen, i.e., the volume
concentrations of nitrogen and oxygen are assumed to be 0.7886 and 0.2114, respectively. Under standard conditions
(with the pressure equal to 1 atm and the temperature equal to 16.7◦C), the densities of nitrogen and oxygen are
1.25046 and 1.42897 kg/m3. The velocities of sound in nitrogen and oxygen are 347.6 and 323.8 m/sec. Substituting
these values into Eqs. (12) and (13), we obtain ch = 342.697429 and cl = 232.236655. The velocities of sound in
air were given in [6]: ca = 331.8, 337.8, and 343.8 m/sec at T = 0, 10, and 20◦C, respectively. Determining the
value of ca at T = 16.7◦C by linear interpolation, we obtain ca = 341.82. The difference in the relative values of ch

and ca (|ca − ch|/ca) · 100% does not exceed 0.3%. Thus, for air considered as a two-component medium, the KM
of a multicomponent medium is adequate to results of physical experiments on determining the velocity of sound.
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Remark 1. Usually air is mentioned as an example of homogeneous media where volume concentrations
are not used, because the gases in air are assumed to be mixed at the molecular level, i.e., the volumes occupied by
each gas in the multicomponent mixture are identical: V1 = . . . = VN = V [7]. Nevertheless, the assumption that
air is a heterogeneous medium with V1 + . . . + VN = V [7] does not seem to be contradictory. The point is that
the exchange of momentum and energy between various components of a heterogeneous medium is determined by
the exchange coefficients aij , bij , and cij . These quantities, however, are not used in calculating the velocities of
propagation of characteristics. Moreover, numerous experiments with air made it possible to determine the volume
concentrations αi for each gas contained in air. This fact allows us to use Eqs. (12) and (13) to evaluate the
adequacy of the KM of a multicomponent medium to the corresponding results of physical experiments.

Remark 2. For heterogeneous models of two-component media in the case of their equilibrium in terms of
velocities and pressures, we can determine the equilibrium velocity of sound (Wood’s velocity) [2]:

c = 1
/√

ρ
( α1

ρ1c2
1

+
α2

ρ2c2
2

)
, ρ = α1ρ1 + α2ρ2.

For the above-indicated parameters for air, this formula yields c = 342.17 m/sec, which is closer to the experimental
value of ca than the calculated value ch. It should be borne in mind, however, that Wood’s formula for velocity
was obtained with the use of the derived equation of state of the entire multicomponent medium in the form
p = p(ρ, T, α1) and under the assumption that the motion of an equilibrium two-phase mixture is described by
conventional equations of a single-phase continuous medium [2], i.e., c =

√
∂p/∂ρ

∣∣∣
S=const

, where S is the entropy.
In contrast to Wood’s formula for velocity, the formulas for ch and cl were obtained through analyzing the entire
system (1)–(4), which, naturally, differs from the traditional system of gas-dynamic equations for a one-component
medium.

The following factors are observed for Eqs. (12) and (13). Let both components have identical velocities of
sound

c0
1 = c0

2 = c0; (15)

hence, we have θ0
1 = θ0

2. In particular, Eq. (15) can follow from the identical thermodynamic parameters of the
components:

γ1 = γ2, c0
v1 = c0

v2.

Then, we obtain the following expressions for the velocities of sound in a two-component medium, independent of
particular values of the volume concentrations of each component, i.e., independent of the values of δ0

1,2 = σ0
1,2/σ0

(δ0
1 + δ0

2 = 1):

ch = c0, cl = c0/
√

2. (16)

The coincidence of the higher velocity of sound with the general velocity of sound in a particular case of
identical velocities of sound of both components and the mixture as a whole seems to be an expected physical
property.

The fact that there is one more velocity of sound in a two-component medium with identical velocities of
sound of both components, which differs from the general velocity of sound and is rigorously lower than the latter,
is apparently a consequence of both mathematical and physical facts.

The equality of the velocities of sound does not necessarily imply the equality U1 = U2, i.e., identical
thermodynamic parameters of the components do not necessarily imply identical gas-dynamic parameters of the
components. The limit transition from U1 �= U2 to U1 = U2 within the framework of equations with partial
derivatives is not “continuous,” which follows from the model example considered below.

Let the coefficients ai > bi > 0 (i = 1, 2) in the system

vt + a1vx + b1wx = 0,

wt + a2wx + b2vx = 0
(17)

be constant. Then, system (17) has two characteristics propagating with the velocities

ch,l = [a1 + a2 ±
√

(a1 − a2)2 + 4b1b2 ]/2.
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If we assume that
a1 = a2 = a, b1 = b2 = b

in the last formula, we obtain

ch = a + b > a − b = cl,

i.e., there are still two velocities of sound even if the corresponding coefficients of system (17) are equal to each
other.

If we assume that v = w in system (17), it is split into two independent equations

vt + (a1 + b1)vx = 0, wt + (a2 + b2)wx = 0,

each having one characteristic with the following velocities of propagation:

c1 = a1 + b1, c2 = a2 + b2.

For a1 = a2 = a and b1 = b2 = b, these velocities are identical: c1 = c2 = a + b.
If we set U1 = U2 in system (1)–(4) with N = 2, by analogy with the procedure described above, then

system (1)–(4) for each i = 1, 2 is split into two subsystems equivalent to the system of equations of gas dynamics.
If we assume that thermodynamic parameters are identical, in addition to the equality of gas-dynamic parameters,
the velocities of sound determined by these two systems of gas-dynamic equations are identical.

One possible physical reason for validity of Eqs. (15) and (16) can be described as follows. For instance, the
thermodynamic parameters of a two-component medium consisting of water and water vapor are identical. Yet,
the components can exchange their momentum and energy. It is this interaction that is taken into account by the
KM of a multicomponent medium. It is because of the interaction of different components and energy spent on
this interaction that the gas-dynamic parameters of different components are not identical. Therefore, we have to
consider the entire system (1)–(4) with N = 2, which has two velocities of sound ch > cl in the homogeneous state
at rest, rather than two individual systems of gas-dynamic equations.

In the case of three-component and four-component media, we obtain the following formula after finding the
determinants Δ3 and Δ4:

ΔN = k2NPN (k2). (18)

For λ = k2, the polynomial PN (λ) in this formula takes the form

PN (λ) = λN − λN−1

2

N∑
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i )θ0
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4

N∑
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i<j
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i θ0
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8

N∑
i,j,m=1
i<j<m

(1 + δ0
i + δ0

j + δ0
m)θ0

i θ0
j θ0

m

. . . + (−1)l λN−l

2l

N∑
i1,...,il=1
i1<...<il

(
1 +

l∑
j=1

δ0
ij

) l∏
j=1

θ0
ij

+ . . . + (−1)N 1
2N

(
1 +

N∑
i=1

δ0
i

) N∏
i=1

θ0
i . (19)

With allowance for δ0
1 + . . . + δ0

N = 1, the last term in Eq. (19) is

(−1)N

2N−1

N∏
i=1

θ0
i .

For an arbitrary value of N , Eqs. (18) and (19) are proved by induction; the determinants ΔN for an arbitrary
value of N ≥ 3 are calculated by the same scheme as in the case with N = 2.

The roots of the characteristic polynomial
ΔN ≡ k2NPN (k2)

of power 4N with N ≥ 3 include a zero root of multiplicity 2N , which corresponds to a contact characteristic of the
same multiplicity. The remaining roots of the characteristic polynomial ΔN are such that their squares are roots
of the polynomial PN (λ) of power N (λ = k2).

For N ≥ 3, it is rather difficult to prove that all roots of the polynomial PN (λ) are real positive numbers.
For N = 3, Cardano’s formulas were assumed to hold for the roots of the cubic polynomial in [8]; moreover,

it was proved that all roots are real if the following inequality is valid:

q2/4 + p3/27 < 0. (20)
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In Eq. (20), we have

p = −b2

3
+ c, q =

2b3

27
− bc

3
+ d, b = −1

2

3∑
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(1 + δ0
i )θ0

i , d = −1
4

θ0
1θ

0
2θ

0
3 ,

c = [(1 + δ0
1 + δ0

2)θ
0
1θ

0
2 + (1 + δ0

1 + δ0
3)θ

0
1θ

0
3 + (1 + δ0

2 + δ0
3)θ0

2θ
0
3 ]/4.

Based on the validity of Eq. (20), we can easily prove that all roots of the polynomial P3(λ) are positive and, hence,
the polynomial P3(k2) has six real roots.

For arbitrary values of
δ0
i > 0, θ0

i > 0, i = 1, 2, 3, δ0
1 + δ0

2 + δ0
3 = 1

it is difficult to prove the validity of inequality (20), in particular, because the value of q2/4 + p3/27 tends to zero
with a sixth order as θ0

i → +0. The left side of inequality (20) also tends to zero with the same order as δ0
i → +0.

At the moment, it is not proved that the polynomial PN (k2) with N ≥ 3 has 2N real roots and there
are ultimately no formulas for calculating the roots in the case with N ≥ 5. Nevertheless, the current level
of development of computational tools and advanced software allow the roots of polynomial (19) to be found
numerically, rather easily and with a required accuracy, for all values of N used in practice with prescribed values of
δ0
i and θ0

i . In particular, the validity of inequality (20) was established with allowance for the equality δ0
1+δ0

2+δ0
3 = 1

by means of an independent direct search of the values of the parameters δ0
i and μ0

i = θ0
i /θ0

3 (i = 1, 2) from 0.01
to 0.99 with a step of 0.01 under the assumption that θ0

3 ≥ θ0
2 , θ0

3 ≥ θ0
1 , and 0 < δ0

1 + δ0
2 < 1. Thus, the

existence of sound characteristics with three velocities of propagation of each of them was numerically confirmed
for a three-component medium.

If the velocities of sound of all N components are identical
c0
i = c0 > 0, 1 ≤ i ≤ N, (21)

i.e., if θ0
i = θ0 = (c0)2 > 0, i = 1, . . . , N , we can easily prove the following equality with the use of Eq. (19):

PN (λ) = (λ − θ0)(λ − θ0/2)N−1. (22)
Thus, if relations (21) hold, the polynomial PN (λ) is presented in the form of N real multipliers, both roots of the
polynomial λ1 = θ0 and λ2 = θ0/2 being positive numbers.

It follows from Eq. (22) that the velocity ch equals the general velocity of sound of all components in the
case of Eq. (21), as in the case with N = 2 [see Eqs. (15) and (16)]:

ch = c0. (23)
The multiplicities of the corresponding sound characteristics are equal to unity.

In the case with Eq. (21), there is only one velocity cl:
cl = c0/

√
2, (24)

and the multiplicities of the corresponding sound characteristics are equal to N − 1.
Thus, in the case with Eq. (21), formulas (22)–(24) generalize Eqs. (16) to the case with an arbitrary N ≥ 3.
The author is grateful to V. F. Kuropatenko for useful discussions of this work.
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